Short copy of pulse fequency modulation vs. pulse width modulation.
The Advantages of Pulse Frequency Modulation for DC/DC Switching Voltage Converters | DigiKey
Just wondering Vlad1 if you saw any ripple with increased voltage... say 400 - 500F @ 30-50 joules? Or any voltage sag?
From link above...
Side effects of PFM operation
An increase in voltage output ripple is often observed when the switching converter flips to PFM mode because of the need for a tolerance band (rather than a fixed point) to sense when the power switches need to be turned on again. If a narrower tolerance band is used, the converter switches more frequently, which reduces the power saving. The engineer must decide on the best trade-off between improved low-load efficiency and increased voltage output ripple. Figures 2a and 2b illustrate the difference in voltage ripple for a switching converter operating in PWM and PFM modes, respectively.

During load transients, any switching converter will exhibit some amount of overshoot during a high-to-low-load transient or undershoot during a low-to-high-load transient. In the case of a converter that is operating in a PSM, the load level is already low, so the next transient will be from low-to-high current (which typically corresponds to transitioning from sleep to active mode). The increased load on the regulator output often results in “output-voltage sag” until the converter loop has time to respond.
Some switching converters include provision to minimize this voltage sag. TI’s TPS62400 employs “dynamic voltage positioning”. During PSM operation, the output-voltage set point is increased slightly (for example, by 1 percent) to anticipate the instantaneous voltage-sagging transient that occurs when the load is suddenly stepped higher. This prevents the output voltage from falling below its desired window of regulation during the initial load transient.
Some devices also offer an enhancement that can be used to balance the compromise between good transient response (best in PWM mode) and low power consumption (best in PSM). The enhancement is an intermediate mode that the engineer can implement using I²C commands to the converter IC that offers better transient response than PSM, but is more efficient than PWM. The intermediate mode is a good option for a system that goes from a high load to a very light load (for example, sleep mode).
Noted: PSM is Pulse Skipping Modulation...
The Advantages of Pulse Frequency Modulation for DC/DC Switching Voltage Converters | DigiKey
Just wondering Vlad1 if you saw any ripple with increased voltage... say 400 - 500F @ 30-50 joules? Or any voltage sag?
From link above...
Side effects of PFM operation
An increase in voltage output ripple is often observed when the switching converter flips to PFM mode because of the need for a tolerance band (rather than a fixed point) to sense when the power switches need to be turned on again. If a narrower tolerance band is used, the converter switches more frequently, which reduces the power saving. The engineer must decide on the best trade-off between improved low-load efficiency and increased voltage output ripple. Figures 2a and 2b illustrate the difference in voltage ripple for a switching converter operating in PWM and PFM modes, respectively.

During load transients, any switching converter will exhibit some amount of overshoot during a high-to-low-load transient or undershoot during a low-to-high-load transient. In the case of a converter that is operating in a PSM, the load level is already low, so the next transient will be from low-to-high current (which typically corresponds to transitioning from sleep to active mode). The increased load on the regulator output often results in “output-voltage sag” until the converter loop has time to respond.
Some switching converters include provision to minimize this voltage sag. TI’s TPS62400 employs “dynamic voltage positioning”. During PSM operation, the output-voltage set point is increased slightly (for example, by 1 percent) to anticipate the instantaneous voltage-sagging transient that occurs when the load is suddenly stepped higher. This prevents the output voltage from falling below its desired window of regulation during the initial load transient.
Some devices also offer an enhancement that can be used to balance the compromise between good transient response (best in PWM mode) and low power consumption (best in PSM). The enhancement is an intermediate mode that the engineer can implement using I²C commands to the converter IC that offers better transient response than PSM, but is more efficient than PWM. The intermediate mode is a good option for a system that goes from a high load to a very light load (for example, sleep mode).
Noted: PSM is Pulse Skipping Modulation...
Last edited: